Homogeneous Bands

Thomas Quinn-Gregson University of York

Supervised by Victoria Gould

Homogeneity

Definition

A countable (first order) structure \mathcal{M} is homogeneous if every isomorphism between finitely generated substructures extends to an automorphism of \mathcal{M} .

Motivation:

- A structure \mathcal{M} is uniformly locally finite (ULF) if there exists a function $f: \mathbb{N} \to \mathbb{N}$ such that every n-generated substructure has cardinality at most f(n).
- A ULF homogeneous structure is \aleph_0 -categorical.

Some key classifications

- (Droste, Kuske, Truss (1999)) A non-trivial homogeneous (lower) semilattice is isomorphic to either $(\mathbb{Q},<)$, the universal semilattice or a homogeneous semilinear order.
- (Schmerl (1979)) Classified posets:
 - i) A_n , the antichain of n elements;
 - ii) \mathcal{B}_n , the union of n incomparable copies of \mathbb{Q} ;
 - iii) $C_n = A_n \times \mathbb{Q}$ with partial order

$$(a, p) < (b, q)$$
 if and only if $p < q$ in \mathbb{Q} ;

- iv) \mathbb{P} , the generic poset, where $n \in \mathbb{N}^* = \mathbb{N} \cup \{\aleph_0\}$.
- We can recognise \mathbb{P} by the property: if A, B and C are pairwise disjoint finite subsets such that A < B, no element of A is above an element of C, and no element of B is below an element of C, then there exists a point C with C with C and incomparable with C.

Semigroup basics

- An element e is an **idempotent** if $e^2 = e$. A **band** B is a semigroup in which every element is an idempotent.
- We may define a partial order \leq on B, known as the **natural order**, by

$$e \le f \Leftrightarrow ef = fe = e$$
.

The Greens relations on a band simplify to:

$$e \mathcal{R} f \Leftrightarrow ef = f, fe = e;$$

 $e \mathcal{L} f \Leftrightarrow ef = e, fe = f;$
 $e \mathcal{D} f \Leftrightarrow efe = e, fef = f.$

Motivating question: Given a homogeneous poset P, does there exist a homogeneous band B such that (B,<) is isomorphic to P?

Homogeneous semilattices

- A semilattice is a commutative band.
- A **lower semilattice** (E, <) is a poset in which the meet \land of any pair of elements exists.
- If Y is a semilattice, then (Y,<) is a lower semilattice. Conversely, given a lower semilattice, we may form a semilattice (Y,\wedge) by defining $a \wedge b$ as the greatest lower bound of $\{a,b\}$.

Lemma (TQG)

Let (Y, \wedge) be a semilattice. Then the following are equivalent:

- i) (Y, \wedge) is a homogeneous semigroup;
- ii) (Y, <) is a homogeneous lower semilattice.

Rectangular bands

• A rectangular band is a band B satisfying

$$efe = e$$
 for all $e, f \in B$.

• A rectangular band with a single \mathcal{R} -class (\mathcal{L} -class) is called a **right** (left) zero band.

Proposition

Let I and J be arbitrary sets. Then $B_{I,J} = (I \times J, \cdot)$ forms a rectangular band, with operation given by

$$(i,j)\cdot(k,\ell)=(i,\ell).$$

Moreover every rectangular band is isomorphic to some $B_{I,J}$. The natural order on $B_{I,J}$ is an anti-chain on $|I| \cdot |J|$ elements, and the Greens relations simplify to:

$$(i,j)\mathcal{R}(k,\ell) \Leftrightarrow i = k \text{ and } (i,j)\mathcal{L}(k,\ell) \Leftrightarrow j = \ell.$$

Homogeneous rectangular bands

Proposition

A pair of bands $B_{I,J}$ and $B_{I',J'}$ are isomorphic if and only if |I| = |I'| and |J| = |J'|. Moreover if $\phi_I : I \to I'$ and $\phi_J : J \to J'$ are a pair of bijections, then $\phi : B_{I,J} \to B_{I',J'}$ defined by

$$(i,j)\phi = (i\phi_I, j\phi_J)$$

is an isomorphism, and every isomorphism from $B_{I,J}$ to $B_{I',J'}$ can be constructed in this way.

We may thus denote $B_{\kappa,\delta}$ to be the unique (up to isomorphism) rectangular band with κ \mathcal{R} -classes and δ \mathcal{L} -classes.

Corollary

Rectangular bands are homogeneous. Moreover any homogeneous band B such that $(B, <) \cong A_n$ is isomorphic to some $B_{i,j}$, where $i \cdot j = n$.

General bands

While there exists a classification theorem for general bands, it is far
too complex for use. Moreover, no general isomorphism theorem
exists, so its usefulness in understanding homogeneous bands is
minimal. However a weaker form of the theorem will be of use:

Theorem

Let B be an arbitrary band. Then $Y = S/\mathcal{D}$ is a semilattice and B is a semilattice of rectangular bands B_{α} (which are the \mathcal{D} -classes), that is,

$$B = \bigcup_{\alpha \in Y} B_{\alpha}$$
 and $B_{\alpha}B_{\beta} \subseteq B_{\alpha\beta}$.

 We therefore understand the global structure of any band, but not the local structure.

Substructure of homogeneous bands

Lemma (TQG)

If $B = \bigcup_{\alpha \in Y} B_{\alpha}$ is a homogeneous band, then:

- i) Aut (B) is transitive on B, that is if $e, f \in B$ then there exists $\theta \in Aut(B)$ such that $e\theta = f$;
- ii) Y is homogeneous;
- iii) $B_{\alpha} \cong B_{\beta}$ for all $\alpha, \beta \in Y$.
 - However homogeneity does not pass to all induced substructures of B. For example take B to be the band corresponding to a homogeneous semilinear order. Then the poset (B,<) is not homogeneous.
 - Understanding how the rectangular bands interact in a band is thus key to homogeneity.

Poset 2: \mathcal{B}_n

- Suppose now that $B = \bigcup_{\alpha \in Y} B_{\alpha}$ is such that $(B, <) \cong \mathcal{B}_n$. Then B satisfies the following condition: for each e_{α} and $\beta \leq \alpha$, there exists a unique $e_{\beta} \in B_{\beta}$ such that $e_{\beta} < e_{\alpha}$. Indeed if $e_{\alpha} > e_{\beta}, f_{\beta}$, then $\{e_{\alpha}, e_{\beta}, f_{\beta}\}$ forms a non-linear, non-antichain, and thus is not embeddable in \mathcal{B}_n .
- A normal band is a band B satisfying

$$zxyz = zyxz$$
 for all $x, y, z \in B$.

This is equivalent to B satisfying the condition above.

• A band B is called a **left/right normal band** if it is normal and each B_{α} is a left/right-zero band.

Strong semilattices

- Let Y be a semilattice, and $\{B_{\alpha}: \alpha \in Y\}$ be a collection of disjoint rectangular bands. For each $\alpha \geq \beta$ in Y, let $\phi_{\alpha,\beta}: B_{\alpha} \to B_{\beta}$ be a morphism such that:
 - i) $(\forall \alpha \in Y) \ \phi_{\alpha,\alpha} = 1_{B_{\alpha}};$
 - ii) for all $\alpha \geq \beta \geq \gamma$ in Y,

$$\phi_{\alpha,\beta}\phi_{\beta,\gamma}=\phi_{\alpha,\gamma}.$$

Define multiplication on $B = \bigcup_{\alpha \in Y} B_{\alpha}$ by the rule that, for each $e \in B_{\alpha}$, $f \in B_{\beta}$,

$$ef = (e\phi_{\alpha,\alpha\beta})(f\phi_{\beta,\alpha\beta}).$$

Then B forms a band, called a **strong semilattice of rectangular** bands, and denoted $[Y, B_{\alpha}, \phi_{\alpha,\beta}]$.

Proposition

A band is normal if and only if it is isomorphic to a strong semilattice of rectangular bands.

Isomorphism theorem for normal bands

 Not only do normal bands have a structure theorem that allows us to understand the local structure, but vitally there exists an isomorphism theorem:

Theorem

Let $B = [Y, B_{\alpha}, \phi_{\alpha,\beta}]$ and $B' = [Z, B'_{\alpha}, \psi_{\alpha,\beta}]$ be normal bands. Let $\pi : Y \to Z$ be an isomorphism, and for every $\alpha \in Y$, let $\theta_{\alpha} : B_{\alpha} \to B'_{\alpha\pi}$ be an isomorphism such that for any $\alpha \geq \beta$ in Y, the diagram

$$B_{\alpha} \xrightarrow{\theta_{\alpha}} B'_{\alpha\pi}$$

$$\downarrow^{\phi_{\alpha,\beta}} \qquad \downarrow^{\psi_{\alpha\pi,\beta\pi}}$$

$$B_{\beta} \xrightarrow{\theta_{\beta}} B'_{\beta\pi}$$

commutes. Then $\theta = \bigcup_{\alpha \in Y} \theta_{\alpha}$ is an isomorphism of B into B', denoted $[\theta_{\alpha}, \pi]$. Conversely, every isomorphism of B into B' can be so obtained for unique π and θ_{α} .

Homogeneous normal bands

• Let $B = [Y, B_{\alpha}, \phi_{\alpha,\beta}]$ be a normal band with each B_{α} isomorphic to $B_{n,m}$ for some (fixed) $n, m \in \mathbb{N}^*$.

Lemma (TQG)

If B is homogeneous then each $\phi_{\alpha,\beta}$ is surjective. Moreover, if any $\phi_{\alpha,\beta}$ is an isomorphism, then $B\cong Y\times B_{n,m}$.

Lemma (TQG)

The band $Y \times B_{n,m}$ is homogeneous if and only if Y is homogeneous. Moreover $(Y \times B_{n,m}, \leq)$ is isomorphic to nm incomparable copies of Y.

Corollary

A band B is homogeneous and is such that $(B, <) \cong \mathcal{B}_n$ if and only if $B \cong \mathbb{Q} \times B_{i,j}$, where $i \cdot j = n$.

JEP and AP

- To consider the case where the connecting morphisms are not injective, we turn to a method of model theory; Fraïssé's Theorem.
- Let K be a class of structures.
- We say that \mathcal{K} has the **joint embedding property** (JEP) if given $B_1, B_2 \in \mathcal{K}$, then there exists $C \in \mathcal{K}$ and embeddings $f_i : B_i \to C$.
- We say that \mathcal{K} has the **amalgamation property** (AP) if given $A, B_1, B_2 \in \mathcal{K}$ (where $A \neq \emptyset$) and embeddings $f_i : A \to B_i$, then there exists $D \in \mathcal{K}$ and embeddings $g_i : B_i \to D$ such that

$$f_1 \circ g_1 = f_2 \circ g_2.$$

Fraïssé's Theorem

Theorem (Fraïssé's theorem)

Let L be a countable signature and let K be a non-empty finite or countable set of f.g. L-structures which is closed under induced substructures and satisfies JEP and AP.

Then there is an L-structure D, unique up to isomorphism, such that $|D| \leq \aleph_0$, \mathcal{K} is the age of D and D is homogeneous. We call D the **Fraïssé limit** of \mathcal{K} .

Example 1: The class of all finite rectangular bands, \mathcal{K}_{RB} , forms a Fraïssé class, with Fraïssé limit B_{\aleph_0,\aleph_0} .

Example 2: Let \mathcal{K} be the class of all finite bands. Since the class of all bands forms a variety, \mathcal{K} is closed under both substructure and (finite) direct product, and thus has JEP. However T. Imaoka showed in 1976 that AP does not hold.

Normal bands

Proposition

The classes K_N , K_{RN} and K_{LN} of all finite normal, right normal and left normal bands respectively form Fraissé classes. Their Fraissé limits will be denoted B_N , B_{RN} and B_{LN} , respectively.

Lemma (TQG)

Let $B_N = [Y, B_\alpha, \phi_{\alpha,\beta}]$ be the generic normal band. Then

- i) Y is the universal semilattice;
- ii) $(B,<) \not\cong \mathbb{P}$;
- iii) $B_{\alpha} \cong B_{\aleph_0,\aleph_0}$ for all $\alpha \in Y$;
- iv) $\phi_{\alpha,\beta}$ is surjective but not injective for all $\alpha \in Y$;

Proof.

ii) Let $e_{\alpha}, f_{\alpha} \in B_{\alpha}$. Then $e_{\alpha} \perp f_{\alpha}$, and there does not exist $g \in B$ such that $g > e_{\alpha}, f_{\alpha}$ since B is normal. Clearly this cannot hold in \mathbb{P} .

Homogeneous bands over $\mathbb Q$

• Let ρ be an equivalence relation on a band B. We say that B satisfies ρ -covering if for any $e, f, g \in B$,

$$e > f$$
 and $f \rho g \Rightarrow e > g$.

• For example if $B = \bigcup_{\alpha \in \mathbb{Q}} B_{\alpha}$ satisfies \mathcal{D} -covering then for any $\alpha > \beta$, $e \in B_{\alpha}$ and $f \in B_{\beta}$ we have e > f.

Lemma (TQG)

Let $B=\bigcup_{\alpha\in\mathbb{Q}}B_{\alpha}$ be a band satisfying ρ -covering, where $\rho=\mathcal{D},\mathcal{R}$ or $\mathcal{L}.$ Then B is homogeneous if and only if $B_{\alpha}\cong B_{\beta}$ for all $\alpha,\beta\in\mathbb{Q}.$ Moreover, if $\rho=\mathcal{D}$ and B is homogeneous then (B,<) is isomorphic to the homogeneous poset $(\mathcal{A}_n\times\mathbb{Q},<)$, where $n=|B_{\alpha}|.$

Homogeneous bands over $\mathbb Q$

Lemma

Let $B = \bigcup_{\alpha \in \mathbb{Q}} B_{\alpha}$ and $C = \bigcup_{\alpha \in \mathbb{Q}} C_{\alpha}$ be a pair of homogeneous bands satisfying ρ -covering, where $\rho = \mathcal{D}, \mathcal{R}$ or \mathcal{L} . Then $B \cong C$ if and only if $B_{\alpha} \cong C_{\alpha}$.

• We may thus denote $D_{n,m}$, $R_{n,m}$ and $L_{n,m}$ as the unique (up to isomorphism) homogeneous band with \mathcal{D} , \mathcal{R} and \mathcal{L} -covering respectively and \mathcal{D} -classes isomorphic to $B_{n,m}$.

Corollary (TQG)

A band $B = \bigcup_{\alpha \in \mathbb{Q}} B_{\alpha}$ is homogeneous if and only if isomorphic to either

- i) $B_{n,m} \times \mathbb{Q}$;
- ii) $D_{n,m}$, $R_{n,m}$ or $L_{n,m}$,

for some $n, m \in \mathbb{N}^*$.

The other cases

Let $B = \bigcup_{\alpha \in Y} B_{\alpha}$ be a homogeneous band.

Proposition (TQG)

If Y is a non-linear semilinear order then B is normal.

Lemma (TQG)

If Y is the universal semilattice and B is not normal then for any $e, f \in B_{\alpha}$ we have

$$eBe \setminus \{e\} = \{g \in B : g < e\} = \{g \in B : g < f\} = fBf \setminus \{f\}.$$

Moreover $(B, <) \not\cong \mathbb{P}$.

Open problem: Are homogeneous bands over the universal semilattice necessarily normal?

Summary

Proposition

The following bands are homogeneous:

- i) Generic type: B_N , B_{RN} and B_{LN} ;
- ii) $Y \times B_{n,m}$ where Y is a homogeneous semilattice;
- iii) $D_{n,m}$, $R_{n,m}$ and $L_{n,m}$,

for any $n, m \in \mathbb{N}^*$. Moreover if P is a homogeneous poset then there exists a homogeneous band B such that $(B,<)\cong P$ if and only if $P\not\cong \mathbb{P}$.

Note: Given a homogeneous poset $P \ncong \mathbb{P}$, the existence of a homogeneous band B such that $(B,<) \cong P$ is not unique in general. In fact B is unique up to isomorphism if and only if P is trivial or $(\mathbb{Q},<)$.